ANALYTICAL AND EXPERIMENTAL STUDIES OF
RADIATIVE HEAT EXCHANGE IN THE MUFFLE
CHAMBERS OF MULTICHANNEL FURNACES

A. E. Erinov and A. G. Golubchin ' UDC 536.3:621,783.24

An analysis is given for the process of radiative heat exchange between the element of a
muffle furnace and the fired material. On the basis of the analysis and experimental data
we have derived a system of equations which uniquely define the conditions of heat transfer
within the furnace.

In the heat treatment of thin ceramics we note a trend toward the use of multichannel furnaces with
the fired materials placed in a single row, in preference over the use of muffle—tunnel furnaces. Efficient
utilization of multichannel furnaces makes it necessary to know the conditions of heat transfer which pre-
vail in the muffle chamber of the furnace.

The purpose of this investigation is the study of the transfer of heat between the muffle chamber and
the material to develop methods of calculating the optimum heating rate, proceeding from the physico-
mechanical properties of the fired material and the structural features of multichannel furnaces.

The muffle chambers of multichannel furnaces are rectangular elongated tunnels lined with shaped
refractories forming a number of narrow parallel channels (slots) through the height of the tunnel, with the
material sliding along the bottoms of these channels. The muffle chamber is broken down lengthwise into
zones of heating, firing, and cooling.

Two external side surfaces are used to transmit heat to the muffle chamber and this heat is propa-
gated by conduction and radiation. The transfer of heat from the muffle chamber to the material is accom-
plished by radiation about the inside perimeter of the muffle-chamber element.

Figure 1 shows the diagram for the muffle~chamber element for a single channel.

Heat is radiated to the surface of the material from the two side walls on the inside and from the
cover on the top, which is a double extended surface whose base is formed by the side walls of the channel.

We make the following assumptions inthis analysis: 1) the process of heat transfer from the channel
perimeter to the material is accomplished by radiation exclusively; 2) the emissivities of the muffle-cham-
ber materials and of the fired materials are assumed equal to unity; 3) the heat flow within the fired mate-
rial in the x-direction is negligibly small; 4) the channel is divided lengthwise into individual segments.
Within the limits of each segment the temperature T, of the side surface of the muffle chamber is a con-
stant, i.e., the smooth variation in temperature over the length of the channel changes into a stepwise varia-
tion, making it possible to change from a three-dimensional to a two-dimensional heat-transfer scheme.

The starting point of our analysis is the law of the conservation of energy, which in this case assumes
the form of a system of balance equations for the transfer of heat by pure conduction within the volume of
the muffle-chamber element and by radiation within the space of the channel bounded by the inside perimeter.

On the surface of the fired material we will isolate an area dx which receives heat exclusively as a
consequence of radiation from the bases and the extended surface. Heat is spent on the natural radiation
and on the internal heat requirement qy.
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Fig. 1. Diagram of the transfer of heat in the muffle-
chamber element.

Let us compile the first balance equation of the system

1
GOTidx + qxdx = hGUTg(pi,dx + hO-OTg(PZ,dx + Tg g T; dy(de,dxr (1)

0
where ¢y dx, ?;,dx, and Pdy,dx are angle factors,
According to the principle of angle-factor reversibility
hq)i.dx = dxcpdx,b

hpy 4y = dXP g2
dyq)dy,dx = dxq)dx.dy'

We find the values of the angle factors ¢qyx qy» Pdx,:» and @dx, 2 from the formulas proposed by Jakob
[1] to determine the angle factors between materials of infinite length in a direction perpendicular to the
plane of the drawing:
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We will substitute the values of the angle factors into (1) and we will reduce terms of the equation by dx:
I
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To compile the second equation, let us examine the conditions of heat exchange between the double ex-
tended surface and the ambient medium.

On the plane of the extended surface we will isolate an area dy, situated at a distance y from the chan-
nel wall. The heat reaches dy as a consequence of radiation from the first and second bases and from the
fired material. In addition, heat is supplied to the area dy as a consequence of heat conduction through the
extended surface. Heat is expended on natural radiation. Using the basic principle of conservation of energy
and evaluating the term characterizing the thermal conductivity, using the Fourier law for an extended sur-
face of unit width, we obtain in the usual fashion

4 ';hﬁdzTy 4 . 4 ; 4
ol ydy = dy? + 0T3R4y -+ O6T 21,4y + 0 \ Trdx®ge, 4y (3)
it
Applying the principle of angle-factor reversibility and substituting the values of these factors into
(3), we obtain the following expression for the second balance equation:
4
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T The system of equations (2) and (4) can be brought to a convenient di-
mensionless form through introduction of new variahles, i.e.,
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J 7 \ In dimensionless form the system is written as follows:
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where h/l is the geometric parameter which is a measure of the height of the base as a ratio of the length
of the extended surface; N, = o(,ng?/ A0 is a dimensionless parameter of thermal conductivity, representing
the ratio of the thermal radiation of a blackened extended surface at a temperature T, to its normal ther-
mal-conductivify component.

We determine the boundary conditions from the symmetry conditions of the system:

de,
[0y Yymo =[Oy ly=1; [_JX =0.
dy P

2
The system of two equations contains three unknowns: ®y, ®x’ and El—x'

To find a uniquely defined solution we must present _cix in the form of a function of other variables
or it must be given a constant value.

The nature of the heat distribution over the length of the channel in a multichannel furnace, estab-
lished over the width of the fired material (Fig. 2), shows that in the basic heating and cooling segments
for the fired material the slope of the temperature curves is identical, indicating a stable requirement of
heat through the width of the fired material, i.e., we are dealing with a regular thermal regime of the second
kind:

g, = g, = const.

However, in this case the numerical solution of the system of integrodifferential equations is made difficult,
since we do not know the nature of the functions ®Y and @,

We know only of the special case of a solution for Ty = 0°K, in which case the system is markedly
simplified and assumes theform of a second-order differential equation

&8,

o= N[0~ (0, 0,0

whose numerical solutions were derived on an electronic digital computer by Sparrow and Eckert for a
black surface [2], and by Zhulev and Kosarenkov for a gray surface for which € = 0.7 [3].

To determine the nature of the distribution for @ and @y we undertook certain tests on an experi-
mental installation, and these enabled us to determine the nature of the curves for @y and Oy, in addition to
helping us in the solution of the system of integrodifferential equations.
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Fig.4. Nomogram.
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The experimental installation consisted of a periodic-
heating furnace, a model of the muffle chamber lined with
carborundum shaped refractories, calorimeters, heat in-
sulation for the calorimeters, a system of water supply and
_ “]DC removal, and measuring equipment. A diagram of the in-

stallation is shown in Fig. 3.
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Fig.3. Diagram of the experimental in-

stallation: 1) furnace; 2) muifle chamber; Chromel —Cope! thermocouples were positioned about
3) thermocouples; 4) calorimeters; 5) heat the entire channel perimeter and along the calorimeter heat-
insulation for the calorimeters; a) natural insulation surface. The side surfaces on the outside were
gas; b) air; c¢) flue gases. measured with platinum-— platinorhodium thermocouples.

The calorimeters were installed so as o make it possible to determine the quantities of heat absorbed
by some segment of the heat-receiving surface, as well as to stabilize the heat-transfer process in time.
The temperature difference between the influx and drainage water was determined by means of differential
Chromel— Copel thermocouples.

The experimental installation was designed so as to provide for lateral heat influx. The substantial
length of the model (700 mm) and the good insulation of the ends of the muffle chamber reduced the end
boundary effects to the minimum. The tests were performed as scon as a steady-state temperature and
heat-flow distribution was achieved in the muffle chamber, with the temperature of the outside side surface
stable. The tests differed from each other in the temperature specified for the side surface (the measure-
ments were performed for a temperature range of 600-1200°C for the side surface on the outside), as well
as in the form of the heat insulation. The experiments were performed with two configurations of the lateral
cross section of the heat insulation, with a geometric parameter h/l = 0.1, and with the thermal conductivity
varying in the range Ny = 15-80.

In the first stage of the investigation we used phosphatoceramoperlite plates S = 8 mm (A = 0.087
+15-107°t W/m - deg) as the heat insulation, which simulated the initial stage of the heating, corresponding
to the conditions

- T, — To_
T = Ro,T?

On the basis of the data for the distribution of the heat flows, which we derived in the first stage of
the investigation, we chose a heat-insulation profile which provided for a constant heat flow through the
width of the insulation, i.e.,

g, == g, = const.
The measurement results for the temperatures and heat flows, as well as the relative values for ac

= const, grouped for the separate horizontal planes setting the temperature distributions through the width
of the extended surface and the heat installation, are given in Tables 1-3.
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TABLE 1. Temperature Distribution through the Width of the Ex-
tended Surface

Distance from the measurement point to the base, Y

g

io
§ ?3) 0,054 0,234 ‘ 0,414 0,505 0,597 t 0,777 \ 0,946 1,000
T,°K | 849 753 698 690 700 758 856 863

</ 0,985 0,873 0,808 0,800 0,810 0,878 0,592 1,00
T,°K 1057 926 845 | 839 853 933 1072 1083

] 0,976 0,855 0,780 0,775 0,83 0,862 0,990 1,000
T,°K [1224 1059 967 957 972 1066 1236 1247

B 0,982 0,850 0,776 0,768 0,780 0,855 0,990 1,000

TABLE 2. Temperature Distribution through the Width of the Heat

Insulation

IE Distance from the measurement point to the base, X

20

§ g 0,066 0,233 0,414 0,500 0,692 0,767 0,950 1,000
T,°K | 804 706 643 635 645 705 819 863

e 0,932 0,818 0,745 0,736 0,747 0,817 0,950 1,000
T,°K {1010 890 808 783 794 916 1034 1083

8 0,932 0,820 0,746 0,723 0,733 0,847 0,956 1,000
T,°K {1173 1032 938 915 928 1053 1187 1247

e 0,940 0,830 0,752 0,735 0,745 0,846 0,952 1,000

TABLE 3. Calorimeter Heat-Flow Values Q, W/Calorimeter

Calorimeter number —
T2, °K - 9c
_ N N B R R
863 194 198 192 196 198 0,202
1083 253 253 266 251 261 0,108
1247 345 339 356 353 355 0,084

On the basis of experimental data, using the method of approximate harmonic analysis [4], we derived
the relationship describing the nature of the distribution for the relative temperatures through the width of

the extended surface and the heat insulation:

8, =1—-A09,sinny,
AGy is the difference between the relative temperatures through the extended surface, between its base and
axis of symmetry;

0, =1 —AQ,sinmx,

A@y is the maximum difference in the relative temperature through the width of the heat insulation.

In the heat treatment of ceramic materials the value of A® is a criterion which determines their in-
tegrity and straightness; its values are known for specific temperature intervals on the heat-treatment

curve [b].

We introduce the relationships derived for ®y and @, into the system of integrodifferential equations
for coordinate values of Y = 0.5 and X =0.5 (the relationships for ®; and @4 are valid for all values of the
coordinates X and Y from zero to one, but this substitution simplifies the system), and as a result we derive

a system of nonlinear algebraic equations of the following form:

(.’L)Q 1
. . .
i f (1 — A sin n X) ax,

PAOy 0.5
(1 ——A®y)4—————N—~ =1 — ——h——h 2 + 2 ho\2 3/2
: l/ (T) + 0.5 ; “T) + (X—0.5)2}
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whose solution is shown by the nomogram in Fig. 4.
Determining the values of EC from the nomogram, we find the optimum heating rate

.
GOTQ% .
mc

G =

NOTATION

3

is the absolute temperature;

is the dimensionless temperature;

is the temperature difference through the width of the surface;
is the power of the internal heat consumption;

is the relative power of the internal heat consumption;
is the heating rate;

is the base height;

is the thickness of the extended surface;

is the length of the extended surface;

is the coordinate along the surface of the material;

is the coordinate along the extended surface;

are dimensionless coordinates;

is the angle factor;

is the heat resistance of the material;

is the radiation constant for a perfect black body;

is the mass of the material;

is the hest capacity of the material.
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Symbols

1,2 denote the numbers of the base surfaces;
X is the surface of the material;

y denotes the extended surface;

0 denotes the midplane of the material.
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